Role of the amino acid 45 residue in reduced folate carrier function and ion-dependent transport as characterized by site-directed mutagenesis.

نویسندگان

  • R Zhao
  • F Gao
  • P J Wang
  • I D Goldman
چکیده

In previous reports, an E45K mutation in reduced folate carrier (RFC1) resulted in marked substrate-specific changes in folate binding and the induction of an obligatory inorganic anion requirement for carrier function. In this study, site-directed mutagenesis was employed to further characterize the role of glutamate-45 in carrier function by replacement with glutamine, arginine, aspartate, leucine, or tryptophan followed by tranfection of the mutated cDNAs into the MTX(r)A line, which lacks a functional endogenous carrier. Alterations in transport function with amino acid substitutions at this residue were not charge related. Hence, E45Q, E45R, and E45K all 1) increased carrier affinity for 5-formyltetrahydrofolate approximately 4-fold, 2) increased affinity for folic acid approximately 6- to 10-fold, 3) did not change affinity for 5-methyltetrahydrofolate, and 4) except for E45R decreased affinity for methotrexate (2- to 3-fold). In contrast, mutations E45D, E45L, and E45W generally reduced affinity for all these folates except for folic acid. Finally, chloride-dependent influx was only noted in the E45R mutant. These data further substantiate the important role that glutamate-45 plays in the selectivity of binding of folates to RFC1 and establish that it is the addition of a positive charge at this site and not the loss of a negative charge that results in the induced anion dependence. These and other studies indicate that mutations in the first transmembrane domain can have a markedly selective impact on the affinity of RFC1 for folate compounds and in particularly a highly salutary effect on binding of the oxidized folate, folic acid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction and Expression of Hepatitis B Surface Antigen Escape Variants within the "a" Determinant by Site Directed Mutagenesis

Background: The antibody response to hepatitis B surface antigen (HBsAg) controls hepatitis B virus infection. The "a" determinant of HBsAg is the most important target for protective antibody response, diagnosis and immunoprophylaxis. Mutations in this area may induce immune escape mutants and affect the performance of HBsAg assays. Objectives: To construct clinically relevant recombinant muta...

متن کامل

اثرات متقابل کادمیوم و pH محیط بر جذب روده‌ای اسیدهای چرب در رت

Background: The intestinal absorption of fatty acids may take place through simple diffusion as well as through protein carrier mediated transport, although the relative importance of each pathway is dependent on the ambient condition of entrocytes. Cad-mium ion influences the absorption of fatty acids in entrocytes. However, the effect of cadmium ion on the absorption of fatty acids in differe...

متن کامل

The Effect of Aspartate-Lysine-Isoleucine and Aspartate-Arginine-Tyrosine Mutations on the Expression and Activity of Vasopressin V2 Receptor Gene

Background: Vasopressin type 2 receptor (V2R) plays an important role in the water reabsorption in the kidney collecting ducts. V2R is a G protein coupled receptor (GPCR) and the triplet of amino acids aspartate-arginine-histidine (DRH) in this receptor might significantly influence its activity similar to other GPCR. However, the role of this motif has not been fully confirmed. Therefore, the ...

متن کامل

Site-specific alteration of arginine 376, the unique positively charged amino acid residue in the mid-membrane-spanning regions of the proline carrier of Escherichia coli.

An alignment of 5 amino acids in the Escherichia coli proline carrier (G328-A366-L371-GR376) is common in the amino acid sequences of several Na+ symport carriers, and it has been proposed as the putative sodium binding motif (Deguchi, Y., Yamato, I., and Anraku, Y. (1990) J. Biol. Chem. 265, 21704-21708). To determine whether these amino acids are essential for Na+ symport activity as the Na+ ...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 2000